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LIQUID CRYSTALS, 1992, VOL. 11, No. 2,269-282 

Effects of three-body intermolecular interactions on the 
nematic-paranematic phase diagram 

by JOHN R. DE BRUYN 
Department of Physics, Memorial University of Newfoundland, 

St. John’s NF, Canada A1B 3x7 

(Received 2 August 1991; accepted 31 August 1991) 

An extension of the Maier-Saupe theory of the nematic-isotropic transition in 
liquid crystals, which incorporates three-body intermolecular interactions into the 
effective single-particle pseudopotential, is presented. Numerical calculations based 
on this theory are performed to investigate the effect of these three-body interactions 
on the nernatic-isotropic transition in zero field, on the nematic-paranematic 
coexistence curve in the presence of an applied field, and on the mean field nematic- 
paranematic critical point. The zero field results are in good agreement with 
experimental measurements. 

1. Introduction 
The nematic-isotropic transition in liquid crystals has been extensively studied in 

the context of mean field theory, beginning with the well-known Maier-Saupe (MS) 
theory [ 11. The MS theory and its generalizations [24 ]  are typically constructed by 
writing down an expression for the attractive part of the intermolecular pair potential 
and converting it to an effective single-particle pseudopotential by performing the 
appropriate averages. These theories predict a first-order nematic-isotropic (N-I) 
phase transition, as is observed experimentally. 

The effects of an externally applied field can be incorporated into a MS-type single- 
particle pseudopotential in a straightforward way. This has been done by Wojtowicz 
and Sheng [ S ]  (WS) and Hanus [6], who showed that in the presence of a field, the N-I 
transition becomes a nematic-paranematic (N-pN) transition. The N-pN transition 
temperature and the degree of ordering at the transition vary as a function of the field 
and the resulting coexistence curve ends at a critical point at a certain critical value of 
the field. The N-pN phase diagram has also been discussed in the framework of Landau 
theory [7-101. 

In this paper we investigate the effects on the N-pN coexistence curve of 
incorporating into an MS-type single-particle pseudopotential a term which represents 
three-body intermolecular interactions. The effects of these interactions on the zero 
field N-I transition, on the shape and range of the N-pN coexistence curve, and on the 
behaviour of the system near the N-pN critical point are studied. This work was 
motivated in part by a recent paper by Vause [ll], who discussed the N-pN critical 
point in terms of the theory of critical phenomena and thermodynamic scaling, and by 
the recent work of Goldstein et al. [12,13], who discussed the effects of triplet 
interactions on the critical behaviour of liquid-vapour systems. 

Vause [l l]  pointed out that the N-pN critical point probably belongs to the 
universality class of the three dimensional Ising model [ 141, as do liquid-vapour 
critical points, the Curie points of three dimensional uniaxial ferromagnets, and critical 
points in other real systems. He then discussed the scaling behaviour [14] of the free 
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270 J. R. de Bruyn 

energy near the N-pN critical point. Due to the invariance of the molecular 
susceptibility under end-for-end rotations of the molecules, an external field h couples 
to the order parameter S like h2 rather than linearly. This implies that the two relevant 
scaling fields are not simply proportional to h and the reduced temperature 
t =(T, - T)/T,, where T,  is the critical temperature, but are instead linear combinations 
of h and t. This field mixing is known [ 151 to affect the shape of the coexistence curve, 
and, in particular, to lead to a breakdown in the classical law of rectilinear diameter 

The diameter of the coexistence curve is the normalized average of the order 
C161. 

parameters of the two coexisting phases 

sd = (sN + spN)/2sc, (1) 

where SN and SpN are the order parameters in the nematic and paranematic phases, and 
Sc is the order parameter at the critical point. Classically, S, is linear in t. In the presence 
of field mixing, however, it displays a weak singularity near T,, where to leading order 
Sd - P-’. Here ct is the critical exponent characterizing the divergence of the specific 
heat at the critical point. This anomaly is not expected to appear in mean field 
calculations, however, since then a= 0. 

Goldstein et al. [12,13] argued that, at least in the case of liquid-vapour systems, 
the microscopic origin of this field mixing is many-body intermolecular interactions. 
By extending the (mean field) van der Waals model of the liquid-vapour critical point 
to include three-body interactions, they made predictions concerning the shape of the 
coexistence curve and the behaviour of the coexistence curve diameter, as functions of 
the importance of triplet interactions relative to pairwise interactions. These predic- 
tions were in agreement with experimental data [12,13]. 

In the following the effects of triplet interactions on the mean-field N-pN 
coexistence curve are studied. The theory is developed in the next section. Results of 
numerical calculations are presented in @ 3 and discussed in @ 4, particularly with regard 
to the relevance of these calculations to the experimental situation. Section 5 is a brief 
conclusion. 

2. Theory 
The MS theory of the N-I transition is well known and is discussed in the standard 

texts [17-191. Here we take a rather phenomenological approach. We start by 
assuming that the pairwise interactions of a single molecule with its neighbours can be 
represented in the mean field approximation by a single-particle pseudopotential, 

(2) 
where 0 is the angle the long axis of the molecule makes with the direction of average 
orientation, or director. P,(cos 0)=4(3 cos2 0 - 1) is the second Legendre polynomial in 
cos 0 and models the anisotropic nature of the interactions. The order parameter S is 
given by the average of P,(cos 0) 

V(C0S 0) = - uSP,(cos 0), 

1 f l  

S = (P2(cos 0)) =- P2(x) exp [ - PV(x)] dx, 
4 0  

where f l=  l/k,T and the single-particle partition function Z is 
1 

z= j exp [ -~V(x) l  dx. 
0 

(3) 

(4) 
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Nematic-paranematic phase diagram 27 1 

The coefficient u represents the strength of the two-body interactions, and is assumed to 
be positive, so that the interactions are attractive. Its precise form depends on the 
nature of the interactions; it is often simply used as a fitting parameter when comparing 
theoretical predictions with experimental data. If, as was done originally by MS [l] we 
take the two-body forces to be due to induced-dipole-induced-dipole interactions, then 
u - v- ' ,  where u is the average molecular volume. This pseudopotential, given in 
equation (2), models the two-body interactions between a given molecule and all other 
molecules by an effective one-body interaction between that molecule and a field S due 
to the average orientation of the other molecules. 

The free energy F of this system can be derived from thermodynamics [19]. 

F=U-TY, (5) 

where U is the internal energy and Y the entropy. Y is given by 

Y =  - Nk,(ln {exp [ -Bfl/Z}) 

and the internal energy by 

N U S  ' 
2 2 

U = -  (V) = - N ~. (7) 

The factor of 1/2 in equation (7) is necessary to avoid double-counting of interactions 
when averaging the pseudopotential. Finally, using equation (5 )  we get for the free 
energy per molecule 

u s  ' 
2 

9 = F/N = - kBT In Z +-. 
It is instructive to work backwards from this expression for the free energy to calculate 
the form of V(cos 8). We start from equation (8), with Z defined as in equation (4), and 
note that a stable state of the system must correspond to an extremum (actually a 
minimum) of 9 with respect to the order parameter. Thus we must have 

or 

where we explicitly treat the pseudopotential V as a function of both S and cos 8. If we 
now substitute equation (3), the definition of S, into the left-hand side of equation (lo), 
we get 

1 1av 
uz J,, as 1 so Pz(x)exp[-Bfldx= -- -exp[-BVJdx. 
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272 J. R. de Bruyn 

For this to be true in general we must have 

- = - UP,(~OS el, av 
as 

If g=O, this is the MS pseudopotential we started with, equation (1). The additional 
term g(cos 6) represents the one-body interactions of a molecule with, for example, an 
externally applied field. The presence of such terms does not change the form of %, 
although of course the partition function Z will depend on g. 

With g = 0 the physical states of the system are found by solving equation (3) self- 
consistently for S ,  with the true solution being that which minimizes %. The results are 
well known: for kBT/u > kBTK(0)/u = 0.22019, S = 0 and the system is isotropic. TK(0) is 
the nematic-isotropic transition temperature, at which there is a first-order transition 
to a nematic state which persists as the temperature is further lowered. At the transition, 
S=S,(O)=0*42903, and S increases monotonically to 1 as T is decreased to 0. 

To incorporate the effect of an externally applied field, we consider a magnetic field 
here but an electric field would be treated in exactly the same way, we follow [ 5 ]  and set 

where y = AxH '/3u. Here H is the strength of the applied field, which we assume is 
oriented parallel to the director. Ax = xII - xL is the molecular diamagnetic anisotropy, 
here assumed to be positive; xII and xI are the diamagnetic susceptibilities parallel and 
perpendicular to the director. 

This model was studied by Wojtowicz and Sheng [S] and from a somewhat 
different perspective by Hanus [6]. Solution of it is exactly analogous to the case where 
g =0, except that the model now has a slightly larger parameter space to be explored. 
These workers [5,6] found that with an applied field the system had a nematic- 
paranematic coexistence curve. The point at the y = 0 end of the coexistence curve is the 
usual MS N-I transition. At y =yc(0)=0*010454 the coexistence curve ends at a critical 
point with a critical temperature k B T / U  = kBT,(0)/u = 0.23094 and an order parameter 
S =Sc(0)=0.21408 [20]. 

The primary purpose of this paper is to study the effect of incorporating into the 
single-particle pseudopotential a term which models three-body interactions. We do 
this by adding a term proportional to S3  to the internal energy, giving a free energy 
equal to 

u s 2  4s3 9-= -k,TlnZ+-+-, 
2 3  

where q parametrizes the strength of the three-body forces. If we take the two-body 
interactions to be induced-dipole-induced-dipole interactions, for which u - u-', then 
it is reasonable to take the three-body forces to be due to Axilrod-Teller triple-induced- 
dipole interactions, in which case q - u V 3 .  This identification is not, however, in any 
way important to the calculations in this paper. The dimensionless ratio q/u is a 
measure of the relative importance of these two types of interactions. 
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Nematic-paranematic phase diagram 

We can now derive the appropriate form of V(cos8) as before. We have 

so 
I 1av 

u z  J,, as S(l +qS/u)= -- -exp [ -#?Vl dx. 

Now, using the definition of S (equation (3)), we can write 

For this to be true in general we must have 

1 av 
as -_ __- - (1 + qS/u)P,(cos e), 

which gives 
4 v(C0s e) = - USP,(COS e) -z s~P,(COS e) - uy~2(cos el, 

where we have used equation (14) for the external field term. We have thus introduced 
into the single-particle pseudopotential a term quadratic in S,  which models three-body 
interactions. This term can be thought of in the following way. The term linear in S 
models pairwise interactions by having a single molecule interact with a field due to the 
average effect of all the other molecules. The average interaction energy due to these 
two-body interactions is proportional to (SP2(c0s 0)) = S2. Our new term treats triplet 
interactions as interactions of a single molecule with a field due to the average effect of 
all other pairs of molecules, which is therefore also proportional to S 2 .  

This model was solved in the same way as the MS and WS models: equation (3) was 
solved self-consistently for S, using equation (20) for V(cos 6). Equation (1 5) was used to 
calculate the free energies of the various solutions found, with the stable physical state 
being that which minimized 9. The calculations were performed using a standard 
numerical software package [21]. Integrals were calculated to an accuracy of at least 10 
figures. First order phase transitions were located by the following procedure: At low 
temperatures, the most stable solution to equation (3) is that with the highest value of S.  
The temperature was increased in steps from some appropriately low value, and S and 
9 were calculated for each solution at each temperature. The computer program noted 
when the solution with the lowest free energy changed from being that with the highest 
value of S to one with a lower value of S. An interpolation procedure was then used to 
find the N-pN transition temperature accurately; it was taken to be the temperature at 
which the free energies of the two phases coexisting at the transition were equal to 
within 10- 12. Values of the transition temperatures and order parameters were 
retained to 6 or 7 figures precision. The results of these calculations are presented in the 
next section. 

3. Results 
3.1. The nematic-isotropic transition 

At zero applied field (y  = 0 in equation (20)), this model undergoes a first-order N-I 
transition, just as in the MS case. The transition temperature, T,(q/u), and the size of the 
jump in the order parameter at the transition, S,(q/u), both increase with increasing 
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-1 0 1 2 3 

q/u 
( b )  

Figure 1. (a) The N-I transition temperature TK as a function of the relative importance of 
triplet interactions, given by the ratio q/u. (b) The nematic order parameter at the N-I 
transition, SK, as a function of q/u. 

importance of attractive triplet interactions, i.e. with increasing q/u. These results are 
shown in figure 1 (a) and (b). A positive value of q/u, since we assume u to be positive, 
means that the triplet interactions are attractive and tend to increase the molecular 
alignment. Thus the nematic phase persists to higher temperatures, and the degree of 
ordering at the transition is larger for larger q/u. 

Figure 2 shows the locus of zero-field N-I transition points as q/u is varied over the 
range - 1.2 < q/u < 3. Also shown are some representative S(T) curves, showing the 
degree of ordering as a function of temperature in the nematic phase. Figure 2 also 
shows some experimental S(T) data for the liquid crystal p-azoxyanisole (PAA) [22], 
and a corresponding curve calculated using this theoretical model. These experimental 
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0.8 

0.6 

v) 

0.4 

0.1 5 0.20 0.25 0.30 0.35 

kBT/U 

Figure 2. The solid curve is the line of zero-field N-I transitions for q/u between - 1-2 (low S K )  
and 3 (high S 3 .  The dotted curves show the order parameter S(T) in the nematic phase for 
q/u = -0.5 (lowest &), 0,05, and 1. The circles are experimental measurements of S(T) at 
constant volume for PAA, from [22], and the dashed line through them is the theoretical 
curve for q/u = - 0.24543. 

data were measured at constant volume, so the volume dependence of the coefficients q 
and u is not a factor in this comparison. The theoretical curve was calculated using q/u 
= - 0.24543, for which SK is equal to the experimental value obtained from [22]. From 
the experimental N-I transition temperature of TK =437*5 K, and the value of 
kBTK/u = 0.21 3 186 from the theoretical curve, we get for this material u/k ,  = 2052 K and 
q/kB = - 504 K. The negative value of q indicates that the triplet interactions for this 
particular liquid crystal are repulsive, i.e., they tend to decrease the alignment of the 
molecules. The theoretical curve describes the experimentally observed behaviour very 
well, with the degree of agreement between experiment and theory being similar to that 
found from other theoretical treatments [4,23]. It should be pointed out that while this 
model in zero field has two undetermined constants, q and u, only one quantity, the 
ratio q/u, was used as an adjustable parameter to match theory and experiment. 

As q/u becomes large and negative, S ,  appears to approach zero as kBTK/u 
approaches a limit near 0.2. The validity of this model is most likely limited to the 
regime Iq/ul<< 1; outside of this regime one would expect still higher-order terms in 
V(cos e), representing higher-order interactions, to become important as well. We 
therefore do not study this large Iq/ul behaviour further, and restrict our attention 
below to Iq/ul<l. 

3.2. The nematic-paranematic coexistence curve 
When y > 0 this model has a N-pN coexistence curve which terminates at a critical 

point, as found in [5] and [6] for the case of the simple MS model with a field. 
Calculated coexistence curves for several values of q/u are shown in figure 3. The critical 
point itself was located by fitting the coexistence curve data to an expression for the 
expected critical behaviour, as discussed below. Figure 3 also shows S(T) along lines of 
constant field for q/u=O.5. Three values of y are shown, two subcritical and one 
supercritical. 
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276 J. R. de Bruyn 

As q/u increases, the temperature range covered by the N-pN coexistence curve 
becomes larger. This range is given by the maximum reduced temperature, i.e. the 
reduced temperature at the zero-field N-I transition, 

which is plotted as a function of q/u  in figure 4. 

0.75 

0.50 

v) 

0.25 

0.00 
0.20 0.22 0.24 0.26 0.28 0.30 

ksT/u 

Figure 3. N-pN coexistence curves for q/u= - 1 (leftmost curve), -05,0,0.5 and 1. The solid 
circles show the critical points in each case. The dotted curves are lines of constant y (i.e. 
lines of constant applied field) for q/u = 0.5; they correspond to y = 0 (leftmost curve), 0.015, 
and 0.030. yc = 0.027672 for this value of q/u .  

0.12 

0.10 

0.08 

0.04 

0.02 

0.00 
-1.0 -0.5 0.0 0.5 1 .o 

q/u 
Figure 4. The N-pN coexistence range, t,,,(q/u). The dashed line is a smooth curve through the 

data. 
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0.04 

0.00 

7 

I 
cn" 
-0.04 

-0.08 
0.00 0.02 0.04 0.06 0.08 0.10 0.12 

t 

temperature t for q/u= - 1  (shortest line), -05, 0, 0 5  and 1 (longest line). 
Figure 5. The diameter of the N-pN coexistence curve plotted as a function of reduced 

The coexistence curve diameter, defined in equation (l), is the average of the order 
parameters in the two coexisting phases. The diameter is plotted in figure 5 for five 
values of q/u. The slope of the diameter is a function of q/u, as expected from the work of 
Goldstein et al. [l2, 131, and changes sign at a value of 4/u  slightly greater than zero. 
The diameter slope is small and positive if the three-body interaction term is zero. 

3.3. The critical point and critical behaviour 
From the theory of critical phenomena [14], it is well known that close to the 

critical point the order parameter behaves like a power law in the reduced temperature 
t .  Specifically, if we define AS* to be the normalized difference between the order 
parameters of the coexisting nematic and paranematic phases 

then 
AS * = BotS 

close enough to the critical point. How close is close enough depends on the particular 
system under study, but in general higher order correction terms [24] must be added to 
equation (23) to allow a comparison with experimental data over a reasonable range 
of t .  

In mean field theory, the critical exponent /I = 1/2 and the expected corrections to 
equation (23) would be terms behaving like t" and t"+p = t"' l j 2  , where n is an integer. T,  
was therefore found by fitting the data for the N-pN coexistence curve to the function 

AS* = Bot1/2 + Bi t  + B2t312, (24) 
using T,  and the amplitudes Bi as fitting parameters. The resulting values of T,(q/u) are 
plotted in figure 6(a ) .  

Equation (24) fitted the calculated coexistence curves essentially perfectly for 
q/u 5 0.2. For larger q/u, relatively small but systematic deviations from the fitting 
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(c). The dashed lines are smooth curves through the data. 
Figure 6. The N-pN critical temperature T,(q/u) (a), field yc(q/u) (b), and order parameter S,(q/u) 
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function were present when the fit was performed over the entire coexistence range. 
These deviations disappeared when the fits were done over a smaller range of t ,  
excluding the data furthest from T,. The values of T,  and B, were insensitive to the 
range of t used in the fits, but the higher order amplitudes B1 and B2 changed 
significantly with the range of t .  

The critical field y, is plotted in figure 6 (b). For each value of q/u, yc was found by 
fitting the N-pN transition temperature to a polynomial in y and extrapolating the fit 
to the appropriate value of T,, determined as described above. The variation of the 
transition temperature with y was described to within the precision of the data by a 
quadratic in y for all values of q/u studied, but not by the linear expression used in [ S ] .  

15 

m" 10 

5 

- ,  , 

*. 

0 1 '  I I I I 

5.0 

4.0 

3.0 

2 2.0 

1 .o 

0.0 

-1.0 

-1.0 -0.5 0.0 0.5 1 .o 

q/u 
(4 

I I I I 

, 

-1.0 -0.5 0.0 0.5 1 .o 

q/u 

(b )  

Figure 7. (n) The leading coexistence curve amplitude B, and (b) the slope of the coexistence 
curve diameter A ,  plotted versus q/u. The dashed lines are smooth curves through the data. 
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-1.0 0.0 1.0 2.0 3.0 4.0 5.0 

A1 

Figure 8. The coexistence curve amplitude B, versus the diameter slope A ,  for - 1 <q/u  < 1. 
The dashed line is a smooth curve through the data. 

The diameter of the coexistence curve, Sdr is expected to be linear in t close to the 
critical point, since the t l - "  singularity discussed in the introduction does not 
contribute in mean field theory. The diameter data were therefore fitted to the 
expression 

with S ,  and A ,  free parameters, and using the values of T, determined from the 
coexistence curve fits discussed above. Small systematic deviations from linearity were 
always observed, although these were almost at the level of the numerical precision for 
q /u  5 - 0.8. Even at higher q/u these deviations were typically plus or minus a few in the 
sixth decimal place and at worst represented about 0.5 per cent of I&-SJ. The 
diameters are virtually indistinguishable from straight lines when plotted as in figure 5. 
In some cases small systematic deviations reminiscent of a critical anomaly were 
observed near T,. These seemed to be associated with increasing error in the numerical 
calculations as T, was approached, not with any true critical behaviour, and so were 
disregarded. The values of S ,  obtained from fits to equation (25) are plotted in figure 

The leading coexistence curve amplitude, B,, and the slope of the diameter, A , ,  both 
decreased smoothly as q/u increased, as shown in figures 7 (a) and (b). Goldstein et a!. 
[12,13] predicted theoretically and confirmed from experimental data for liquid- 
vapour systems that B,  and A ,  were linearly related at small values of the variable 
corresponding in their work to q/u. As can be seen in figure 8, the relationship between 
these two amplitudes is quite accurately linear for small q/u and is fairly close to linear 
over the range - 1 < q/u Q 1. 

6 (4 

4. Discussion 
The above results show that, within this mean field approach, many-body 

interactions can have a significant effect on the N-I transition, on the N-pN 
coexistence curve, and on the N-pN critical point. In particular, for three-body 
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interactions which tend to enhance the molecular alignment, the range of existence of 
the N-pN coexistence curve is extended and, at a given applied field, the degree of 
ordering in the nematic phase is greater than that found if many-body interactions are 
not included in the pseudopotential. 

Goldstein et al. calculated the effects of three-body interactions on a mean field 
model of the liquid-vapour phase transition. Their model, an extension of the van der 
Waals model, was sufficiently simple that analytic expressions for many quantities 
could be derived. Unfortunately such is not the case for our model of the N-pN system, 
and we are limited to numerical calculations. Nonetheless we can draw some 
qualitative comparisons with the results of [12,13]. Certainly our results show that the 
slope of the coexistence curve diameter varies as a function of the relative importance 
the three-body term in the pseudopotential, increasing for more strongly repulsive 
triplet interactions (i.e., for more negative q/u) [25]. Similarly the critical amplitudes B, 
and A ,  increase for more strongly repulsive many-body interactions. We also find that 
B, and A ,  are linearly related, albeit with a different slope from that found in [ 12,131, 
for small q/u. All of these results are in qualitative agreement with the results of 
Goldstein et al. [12,13]. Thus although the quantitative aspects may be different for the 
two systems, many of the qualitative features of the effects of many-body interactions 
on the coexistence curve carry over from one system to the other. 

It is possible to make contact with experimental results only in the case of the zero- 
field N-I transition. As shown in figure 2, the predictions of this model agree well with 
experimental measurements of the nematic order parameter, at constant volume, of 
PAA [22]. We emphasize that the single parameter q/u was used to match the 
experimental and theoretical values of S,. The value of u was then determined by the 
experimental N-I transition temperature. No adjustments were made to fit to the 
experimental data away from the transition temperature. 

At non-zero field the experimental situation is less satisfactory. Some experiments 
have been done on the liquid crystal 4-cyano-4-(n-heptyl)biphenyl(7CB) in an e!ectric 
field by Nicastro and Keyes [26]. They observed paranematic ordering and a first order 
nematic-paranematic transition in applied fields of order lo5 V cm-'. They also 
reported indirect evidence for the existence of an endpoint of the N-pN coexistence 
curve, but were unable to approach this point closely due to dielectric breakdown of 
their samples at high fields. They estimated the critical electric field to be about 2-5 
x lo5 Vcm-', which is not difficult to attain in the laboratory. The equivalent critical 
magnetic field, however, would be about 2.5 x lo6 Oe, which is very high. Similar 
estimates of the critical field have been made by others [5-7,9]. It thus seems that 
experiments to study the N-pN critical point in an electric field should not be 
impossible. Nonetheless, substantial technical difficulties, related mostly to dielectric 
breakdown and the response of charged species in the sample to the necessary high 
electric fields, must first be overcome. 

5. Conclusions 
We have presented an extension to the Maier-Saupe theory of the nematic- 

isotropic transition that incorporates three-body interactions into the effective single- 
particle pseudopotential. The effects of these interactions on the N-I transition, the 
N-pN coexistence curve, and the N-pN critical point have been studied. At zero field, 
this model is in good agreement with experimental data for PAA [22]. The dependence 
of the critical coexistence curve amplitude, and of the slope of the coexistence curve 
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diameter, on the relative importance of triplet interactions is in qualitative agreement 
with calculations and experimental data for liquid-vapour systems [12,13], but at 
present no data from the N-pN critical region are available for comparison. 
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Sciences and Engineering Research Council of Canada. 
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